微信扫码分享

利用贝叶斯原理在隐私保护数据上进行分类的方法

0范文库 分享 时间:

摘要:针对可还原数据扰动(retrievable general additive data perturbation,RGADP)算法在保护数据库隐私时会影响数据挖掘结果的问题,提出一种利用贝叶斯原理在扰动数据上进行分类的方法。该方法分析RGADP算法过程,利用贝叶斯原理,根据扰动数据推算原始数据的概率分布,用估算的概率分布重构数据,并对重构数据进行分类以提高分类的正确性。实验结果表明:该方法估算出的概率分布与原始数据概率分布接近,且重构数据的分类正确率相比扰动数据而言平均可提高4%以上,其更接近原始数据的分类正确率,从而有效地降低了扰动算法对数据分类的影响;该方法的运行时间与数据量和数据分组数成正比,重构10000条数据的运行时间在200 ms以内,因此该方法也具有较高的效率。

关键词:隐私保护;数据扰动;贝叶斯原理;分类

中图分类号:TP301 文献标志码:A 文章编号:0253-987X(2015)04-0046-07

利用贝叶斯原理在隐私保护数据上进行分类的方法

将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
推荐度:
点击下载文档文档为doc格式
投诉建议
0